頁	行	誤	正
P10	4	$\sqrt{\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)^{2}/4+{ au_{\mathrm{xy}}}^{2}}$	$\sqrt{\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)^{2}/4+{ au_{\mathrm{xy}}}^{2}}$
P13	右 1	$ an 2 \theta = \frac{\varepsilon_{_{I}} + \varepsilon_{_{II}} - 2\varepsilon_{_{II}}}{\varepsilon_{_{I}} - \varepsilon_{_{II}}}$ (2.26) として得られる。ただし θ は $\varepsilon_{_{I}} + \varepsilon_{_{II}} - 2\varepsilon_{_{II}} > 0$ のとき $0^{\circ} < \theta < 90^{\circ}$ $\varepsilon_{_{I}} + \varepsilon_{_{II}} - 2\varepsilon_{_{II}} < 0$ のとき $-90^{\circ} < \theta < 0^{\circ}$ である。ここで式(2.26)の θ は、 $\varepsilon_{_{I}} + \varepsilon_{_{II}} - 2\varepsilon_{_{II}} > 0$ の場合では 最大主ひずみ $\varepsilon_{_{I}}$ の方向を示す。しかし $\varepsilon_{_{I}} + \varepsilon_{_{II}} - 2\varepsilon_{_{II}} < 0$ の場合の θ は最小主ひずみ $\varepsilon_{_{2}}$ の方向を示すこととなる。したがって $\varepsilon_{_{1}}$ と $\varepsilon_{_{2}}$ の方向の差がつねに $\varepsilon_{_{1}}$ 0の場合の最大主ひずみ $\varepsilon_{_{1}}$ 0の方向は $\varepsilon_{_{1}}$ 0の場合の最大主ひずみ $\varepsilon_{_{1}}$ 0の方向は $\varepsilon_{_{1}}$ 0の方向は $\varepsilon_{_{2}}$ 0の場合の最大主ひずみ $\varepsilon_{_{1}}$ 0の方向は $\varepsilon_{_{1}}$ 0の方向は $\varepsilon_{_{2}}$ 0の方向は $\varepsilon_{_{2}}$ 0の方向は $\varepsilon_{_{3}}$ 0の方向は $\varepsilon_{_{4}}$ 0。となる。	$ an 2 \theta = rac{2 \epsilon_{\Pi} - (\epsilon_{\Gamma} + \epsilon_{\Pi})}{\epsilon_{\Gamma} - \epsilon_{\Pi}}$ (2.26) として得られる。ただし θ は $\epsilon_{\Gamma} \geq \epsilon_{\Pi}$ のとき $0^{\circ} < \theta < 90^{\circ}$ $\epsilon_{\Gamma} < \epsilon_{\Pi}$ のとき $-90^{\circ} < \theta < 0^{\circ}$ である。ここで式(2.26)の θ は $\epsilon_{\Gamma} \geq \epsilon_{\Pi}$ の場合では最大主ひずみ ϵ_{Γ} の方向を示す。しかし $\epsilon_{\Gamma} < \epsilon_{\Pi}$ の場合の θ は最小主ひずみ ϵ_{Γ} 方向を示すこととなる。したがって ϵ_{Γ} と ϵ_{Γ} の方向の差がつねに ϵ_{Γ} の関係から, ϵ_{Γ} ϵ_{Γ} の場合の最大主ひずみ ϵ_{Γ} の方向は ϵ_{Γ} となる。
P13	図 2.15	(a) $\varepsilon_{\rm I} + \varepsilon_{\rm II} - 2 \varepsilon_{\rm I} > 0$ (b) $\varepsilon_{\rm I} + \varepsilon_{\rm II} - 2 \varepsilon_{\rm I} < 0$	(a) $\varepsilon_1 \ge \varepsilon_{\text{II}}$ (b) $\varepsilon_1 < \varepsilon_{\text{II}}$
P26	1	ひずみゲージの選択方法	ひずみゲージの種類と選択方法
P61	1	め、リード線はリード線は切らない	め、リード線は切らない
P63	左 2、3 右 1	チャネル	チャンネル
P64	左 8 右 6	チャネル	チャンネル
P67	下 10	加熱硬化型使用して	加熱硬化型を使用して
P73	6	主ひずみの方向 $\theta = \frac{1}{2} \cdot \tan^{-1} \left\{ \frac{\varepsilon_{I} + \varepsilon_{III} - 2\varepsilon_{II}}{\varepsilon_{I} - \varepsilon_{III}} \right\}$ $= \frac{1}{2} \cdot \tan^{-1} \left\{ \frac{321 + 12 - 2\times (-101)}{321 - 12} \right\} = 30.0^{\circ}$ 最大主ひずみの方向の判別 $\varepsilon_{I} + \varepsilon_{III} - 2\varepsilon_{II} = 321 + 12 - 2\times (-101) = +535 > 0$ 上式のように $\varepsilon_{I} + \varepsilon_{III} - 2\varepsilon_{II} > 0$ の場合, $ \pm \text{ひずみの方向} \ \theta \ \text{は最大主ひずみ方向を示す。したがって,} $ 第 I 軸ゲージから反時計回りに 30.0° の方向が最大主ひずみの 方向となる。	主ひずみの方向 $\theta = \frac{1}{2} \cdot \tan^{-1} \left\{ \frac{2 \varepsilon_{\Pi} - (\varepsilon_{I} + \varepsilon_{\Pi})}{\varepsilon_{I} - \varepsilon_{\Pi}} \right\}$ $= \frac{1}{2} \cdot \tan^{-1} \left\{ \frac{2 \times (-101) - (321 + 12)}{321 - 12} \right\} = -30.0^{\circ}$ 最大主ひずみの方向の判別 $\varepsilon_{I} - \varepsilon_{\Pi} = 321 - 12 = +309 > 0$ 上式のように $\varepsilon_{I} \geq \varepsilon_{\Pi}$ の場合, 主ひずみの方向 θ は最大主ひずみ方向を示す。したがって,第 I 軸ゲージから反時計回りに -30.0° の方向が最大主ひずみの方向となる。

P74	表 7.2	+ 3 0. 0° φ	-30.0°
P76	6	動ひずみ測定器のレンジツマミは「OFF」を確認する。	削除
P76	11	感度調整器を「OFF」、校正(CAL)スイッチを「0」にセットして、 電源スイッチを「ON」にする。	削除
P76	23	3V	2V
P76	25	CAL スイッチを「OFF」にする。	削除
P76	下4	リアルタイム (REALTIME), 連続波形記録 (WAVE, CONT) にする。	削除
P78	表 7.3	-11L1M2S	-11L1M 3 R
P82	表 8.5	変換器の検査表の例	変換器の成績表の例
P83	1	ノイズが発生するため、現在では	ノイズが発生する。現在では
P94	下11	トーナメント負荷装置の最終部と油圧機器部との間に圧縮型荷重変 換器を設置して負荷荷重のモニターに用いる。	試験体と負荷装置である油圧機器部との間に圧縮型荷重変換器を設置して負荷荷重の測定に用いる。
P94	右下3	232C を通して	232C 等を通して